Enabling multidisciplinary perspective in student design projectFast fashion and sustainable manufacturing systems

Vukica Jovanovic, Old Dominion University
Manveer Mann, Montclair State University
Petros J. Katsioloudis, Old Dominion University
Daniel L. Dickerson, Old Dominion University

Abstract

Fast fashion retailers are growing faster than any other type of retailer due to their ability to offer trendy low-cost clothing mimicking latest runway trends with turnaround times as low as two weeks. Fueled by short production and distribution lead times, fast fashion retailers combine rapid prototyping, small batches of fashionable product designs, and efficient transportations and delivery. Among others, the methods applied in fast-fashion industry include mass customization and personalization, and lean manufacturing. Current trends in manufacturing lean towards the application of digital and rapid manufacturing methods and increased use of product lifecycle management, knowledge management systems and computer integrated manufacturing. Furthermore, modern fashion systems span geographical regions, wherein design and manufacturing is not necessarily done at the same location and it requires coordination of many pairs of hands and machines, followed by multiple processes and treatments to meet the demands of ever decreasing time-to-market. Hence, there are connections that can be used as a benefit for multidisciplinary student projects which would include fashion merchandising students and engineering students. Therefore, the purpose of this paper is to present a model of a project which would include a team of students with diverse backgrounds and experiences in fashion, engineering, and industrial technology in order to examine various manufacturing system concepts that can be used to enhance the sustainability of fast-fashion systems. These activities would be embedded in their current courses and they would expose engineering students to a fashion manufacturing industry and fashion students to engineering concepts of product lifecycle management and computer aided manufacturing. Special emphasis would be given to female engineering students who are not necessarily exposed to this kind of industry in their major.